
Security Assessment

Golden Goose
CertiK Assessed on Oct 24th, 2024

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

4 Major 2 Resolved, 2 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

4 Medium 4 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

3 Minor 1 Resolved, 2 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

1 Informational 1 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY GOLDEN GOOSE

CertiK Assessed on Oct 24th, 2024

Golden Goose

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Staking

ECOSYSTEM

Binance Smart Chain

(BSC) | Ethereum (ETH)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 10/24/2024

KEY COMPONENTS

N/A

CODEBASE
Private shared.

View All in Codebase Page

12
Total Findings

8
Resolved

0
Mitigated

0
Partially Resolved

4
Acknowledged

0
Declined

TABLE OF CONTENTS GOLDEN GOOSE

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

System Overview

Design Considerations:

Findings

GLOBAL-01 : Centralization Related Risks

LTR-01 : Compiler Error in `LpToken` Contract

USD-03 : Unprotected Principal in `USDVault` Contract

USV-01 : Incorrect Order of `share` and `assetAmount` in `RedeemLock` Struct

DSR-01 : Minimum Deposit Value Not Cleared for Deleted Vault

LRT-01 : Incorrect Token Balance Check in `moveToken()` Function Leads to Potential Transfer Failure

LTR-02 : Incorrect Uint Type Used

USD-02 : Potential Exploit in `getAvailableAmount()` Function Due to Lack of ID Ownership Verification

LRV-01 : Inaccurate Token Amount Recording in `getAvailableAmount` Function

RNA-03 : Missing Zero Address Validation

RNA-04 : Third-Party Dependency Usage

CON-05 : Unused Return Value

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS GOLDEN GOOSE

CODEBASE GOLDEN GOOSE

Repository

Private shared.

CODEBASE GOLDEN GOOSE

AUDIT SCOPE GOLDEN GOOSE

6 files audited 6 files without findings

ID Repo File SHA256 Checksum

IDS
CertiKProject/certik-

audit-projects
interfaces/IDataStorage.sol 2fccf464cdb77199d8d6b6795e4ee38c2389

1f0aca081a6a3773fb4643492d3f

DSG
CertiKProject/certik-

audit-projects
DataStorage.sol

f5375daaeae8503659474b3d1f3c417bacdd

88e6b673a88021f6d0feb5bdeba1

LRG
CertiKProject/certik-

audit-projects
LRTVault.sol

a85a04fcaa6353cdd3293388c756b5d0595

6b208c8ccf69efc5ccf985a57f29b

LTG
CertiKProject/certik-

audit-projects
LpToken.sol

fd0ac2805b5be277e4f3b8273adcf899bd49

d647fb9a56dbb151a92cd3d78f7c

USG
CertiKProject/certik-

audit-projects
USDVault.sol 05776e488a41be9e7c6ede06baa58fce37b

6557b783692771192e6f810b6d183

VFG
CertiKProject/certik-

audit-projects
VaultFactory.sol f5abe0559ccd3d138da50f0fcfff641512733e

41789f17171d2834dea6030b6c

AUDIT SCOPE GOLDEN GOOSE

APPROACH & METHODS GOLDEN GOOSE

This report has been prepared for Golden Goose to discover issues and vulnerabilities in the source code of the Golden

Goose project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Formal Verification, Manual Review, and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS GOLDEN GOOSE

REVIEW NOTES GOLDEN GOOSE

System Overview

The "Golden Goose" project operates as a staking platform and comprises the following contracts:

DataStorage 0x857aB0b4F236F7DD7E5AC5F96C0bbEbF230c2D3B：Records critical variables including _owner ,

manager , depositLockTime , redeemLockTime , minDepositMap , and vaults for the entire project.

VaultFactory 0x739A8F9cB6Ec2B79006554dbc3a42fbF75303d18: Creates two types of vaults: LRTVault and

USDVault for users to stake and withdraw tokens. Key differences include:

In LRTVault , stakers can only withdraw the same amount as the staked amount. In USDVault , stakers

may withdraw a different amount, controlled by the _owner of the DataStorage contract via the

LpToken contract.

In LRTVault , stakers deposit tokens to the contract. In USDVault , deposited tokens are transferred to

the custodian role.

In LRTVault , stakers must "unlock" their stakes before withdrawal. In USDVault , stakers must "unlock"

stakes and "redeem" tokens before withdrawal.

USDT Vault 0xe8a01d8dac4af19ec7a22cf87f3d141ce6e7e9fb: A USDVault that allows staking USDT .

USDT LpToken 0xa79d807b260af533bd481a97039268c028108609: Controls the withdrawable amount in USDVault

contracts.

DC_tBTC Vault 0xd31fab00f39153a8389fb9e7065b0c290e1bad5d: An LRTVault allowing staking of DC_tBTC .

DC_wstETH Vault 0x234c013dccb6af642fcb7060a91c9c71504f6299: An LRTVault allowing staking of wstETH .

The system grants the _owner control through privileged functions, as detailed in "GLOBAL-01: Centralization Related

Risks":

In the contract DataStorage , the role _owner has authority over the functions shown in the diagram below:

REVIEW NOTES GOLDEN GOOSE

https://etherscan.io/address/0x857aB0b4F236F7DD7E5AC5F96C0bbEbF230c2D3B
https://etherscan.io/address/0x739A8F9cB6Ec2B79006554dbc3a42fbF75303d18
https://etherscan.io/address/0xe8a01d8dac4af19ec7a22cf87f3d141ce6e7e9fb
https://etherscan.io/token/0xa79d807b260af533bd481a97039268c028108609
https://etherscan.io/address/0xd31fab00f39153a8389fb9e7065b0c290e1bad5d
https://etherscan.io/address/0x234c013dccb6af642fcb7060a91c9c71504f6299

Authenticated Role

Function State Variables

Function State Variables

Function State Variables

Function State Variables

Function State Variables

Function State Variables

_owner

delVault

updateManager

setVaultMinDeposit

updateDepositLockTime

updateRedeemLockTime

addVault

minDepositMap

vaults

manager

minDepositMap

depositLockTime

redeemLockTime

vaults

In the contract LRTVault , the role _owner of the dataStorage contract has authority over the functions shown in

the diagram below:

REVIEW NOTES GOLDEN GOOSE

Function

State Variables

External Calls

Authenticated Role

Function State Variables

Function External Calls

Function

State Variables

External Calls

External Calls

updateDataStorageContract

dataStorage

dataStorage.owner

dataStorage.minDepositMap

_owner

updateMaxLockAmount

moveToken

updateLockTime

maxLockAmount

IERC20.balanceOf

IERC20.safeTransfer

lockTime

In the contract USDVault , the role _owner of the dataStorage has authority over the functions shown in the

diagram below:

REVIEW NOTES GOLDEN GOOSE

Function

State Variables

Function

State Variables

External Calls

Function State Variables

Authenticated Role

Function State Variables

updatePreCustodian

updatePreCustodianTime

preCustodian

updateDataStorageContract

dataStorage

dataStorage.owner

updateCustodian custodian

_owner

initialCustodian custodian

_initializing

In the contract LpToken , the role _manager of the dataStorage contract has authority over the function shown in

the diagram below:

Function State VariablesAuthenticated Role

updatePrice
updateTime

price
_manager

In the contract LpToken , the role _owner of the dataStorage contract has authority over the functions shown in

the diagram below:

Function State Variables

Authenticated Role

Function State Variables

forceUpdatePrice
updateTime

price

_owner

updateDeviation maxDeviation

REVIEW NOTES GOLDEN GOOSE

In the contract LpToken , the role vault has authority over the functions shown in the diagram below:

Authenticated Role

Function

Internal Calls

Function Internal Calls

Internal Calls

Internal Calls

vault

burn

mint

_burn

convertToAssets

convertToShares

_mint

In the contract OwnableUpgradeable , the role _owner has authority over the functions transferOwnership() and

renounceOwnership() .

Design Considerations:

All Contracts Are Not Upgradeable

Although these contracts inherit upgradeable contracts, they are used directly rather than through proxies.

Minimum Deposit Requirement Can Be 0

The deposit() function in the LRTVault and USDVault contracts ensures that the deposit amount is not less than

dataStorage.minDepositMap(address(this)) :

 require(amount >= dataStorage.minDepositMap(address(this)), "Deposit amount too

small");

However, the minimum deposit value can be set to 0.

REVIEW NOTES GOLDEN GOOSE

Vault Does Not Require Registration in DataStorage

While functions exist for the _owner to add and delete vaults from the DataStorage contract, vaults can still be used even if

they are not added or have been deleted.

Vault Supports Redemption on Behalf of Others

The redeemAndUnLockDeposit() function is intended to unlock and redeem deposits for msg.sender . However, since the

function does not verify that the provided "ids" belong to msg.sender , users can unlock deposits belonging to others, allowing

those deposits to be redeemed without further action by their owners.

REVIEW NOTES GOLDEN GOOSE

FINDINGS GOLDEN GOOSE

This report has been prepared to discover issues and vulnerabilities for Golden Goose. Through this audit, we have

uncovered 12 issues ranging from different severity levels. Utilizing the techniques of Formal Verification, Manual Review &

Static Analysis to complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

GLOBAL-01 Centralization Related Risks Centralization Major Acknowledged

LTR-01 Compiler Error In LpToken Contract Coding Issue Major Resolved

USD-03
Unprotected Principal In

USDVault Contract

Centralization,

Volatile Code
Major Acknowledged

USV-01

Incorrect Order Of share And

assetAmount In RedeemLock

Struct

Logical Issue Major Resolved

DSR-01
Minimum Deposit Value Not Cleared

For Deleted Vault
Logical Issue Medium Resolved

LRT-01

Incorrect Token Balance Check In

moveToken() Function Leads To

Potential Transfer Failure

Logical Issue Medium Resolved

LTR-02 Incorrect Uint Type Used Inconsistency Medium Resolved

USD-02

Potential Exploit In

getAvailableAmount() Function

Due To Lack Of ID Ownership

Verification

Logical Issue Medium Resolved

LRV-01
Inaccurate Token Amount Recording

In getAvailableAmount Function
Logical Issue Minor Acknowledged

FINDINGS GOLDEN GOOSE

12
Total Findings

0
Critical

4
Major

4
Medium

3
Minor

1
Informational

ID Title Category Severity Status

RNA-03 Missing Zero Address Validation Volatile Code Minor Resolved

RNA-04 Third-Party Dependency Usage Design Issue Minor Acknowledged

CON-05 Unused Return Value Volatile Code Informational Resolved

FINDINGS GOLDEN GOOSE

GLOBAL-01 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization Major Acknowledged

Description

In the contract DataStorage , the role _owner has authority over the following functions:

updateManager()

updateDepositLockTime()

updateRedeemLockTime()

setVaultMinDeposit()

addVault()

delVault()

Any compromise to the _owner account may allow the hacker to take advantage of this authority and update the manager

address, update deposit lock time, delete a vault address, add a vault, set minimum deposit for vault, update the redeem lock

time.

In the contract LRTVault , the role _owner of the dataStorage contract has authority over the following functions:

updateDataStorageContract()

updateMaxLockAmount()

moveToken()

updateLockTime()

Any compromise to the _owner account may allow the hacker to take advantage of this authority and update the data

storage contract address, update the maximum lock amount, move tokens to a specified receiver address, and update the

lock time (up to 180 days). It is important to note that the _owner can only transfer tokens that are not the deposited token

type or deposited tokens exceeding the total staked amount.

In the contract USDVault , the role _owner of the dataStorage has authority over the following functions:

updatePreCustodian()

updateDataStorageContract()

updateCustodian()

initialCustodian()

Any compromise to the _owner account may allow the hacker to take advantage of this authority and update the

preCustodian address, update the data storage contract address, update the custodian address, and set the initial

GLOBAL-01 GOLDEN GOOSE

custodian address.

In the contract OwnableUpgradeable , the role _owner has authority over the following functions:

transferOwnership()

renounceOwnership()

Any compromise to the _owner account may allow the hacker to take advantage of this authority and transfer or renounce

the ownership.

In the contract LpToken , the role _manager of the dataStorage contract has authority over the following function:

updatePrice()

Any compromise to the _manager account may allow the hacker to take advantage of this authority and update the price.

In the contract LpToken , the role _owner of the dataStorage contract has authority over the following functions:

forceUpdatePrice()

updateDeviation()

Any compromise to the _owner account may allow the hacker to take advantage of this authority and force update the

price, update the maximum deviation setting.

In the contract LpToken , the role vault has authority over the following functions:

burn()

mint()

Any compromise to the vault account may allow the hacker to take advantage of this authority and mint or burn shares. It

is important to note that for the entire project, LP Tokens are created by the vault , which is the USDVault contract. The

standalone use of the LpToken contract is not intended, as all LpToken instances are created by the vault and are open-

source.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

GLOBAL-01 GOLDEN GOOSE

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[Golden Goose Team, 10/24/2024]:

The team acknowledged the issue and adopted the multisign solution to ensure the private key management process at the

current stage. The DataStorage contract has transferred the ownership to a Gnosis Safe contract with 2/2 signers in the

sensitive function signing process.

DataStorage address: 0x857aB0b4F236F7DD7E5AC5F96C0bbEbF230c2D3B

_owner address: 0x509B38c5F884067E2128c4FC89d1489813d695E0

The multisign addresses:

1. EOA:0x9bCAd39B7D70e7A57BEed4e1640AEEFe49bCa662

GLOBAL-01 GOLDEN GOOSE

2. EOA:0xbE22D669EEb4B80Bd0568A833a82E29d007b9494

Additionally, the team implemented the following constraints:

1. In the USDVault contract, any change to the custodian requires first modifying the preCustodian and waiting 2

days before the change can take effect.

2. In the LRTVault contract, the _owner can set the maximum lock time, which is restricted to a maximum of 180

days.

3. In the LpToken contract, the _owner can set the price of the LpToken , but any price adjustment is capped at a

10% deviation and can only occur once every 12 hours.

[CertiK, 10/24/2024]:

While this strategy has indeed reduced the risk, it's crucial to note that it has not completely eliminated it. CertiK strongly

encourages the project team to periodically revisit the private key security management of all above-listed addresses.

GLOBAL-01 GOLDEN GOOSE

LTR-01 COMPILER ERROR IN LpToken CONTRACT

Category Severity Location Status

Coding Issue Major LpToken.sol (commit:be4456): 24 Resolved

Description

The LPToken contract fails to compile due to an incorrect number of arguments being passed to the ERC20 constructor in

its own constructor. The error message indicates that the ERC20 constructor expects only two arguments (name and

symbol), but three arguments (name, symbol, and decimals) are being provided.

Recommendation

Remove decimals from ERC20(name,symbol,decimals) .

Alleviation

[Golden Goose Team, 10/11/2024]: The team heeded the advice and resolved the issue in the updated code.

LTR-01 GOLDEN GOOSE

USD-03 UNPROTECTED PRINCIPAL IN USDVault CONTRACT

Category Severity Location Status

Centralization, Volatile Code Major USDVault.sol (commit:0749dc): 60 Acknowledged

Description

When the deposit() function is called, tokens are transferred to the address returned by getCustodian() , which is not

the current contract address. The withdraw() function is designed to withdraw tokens from the contract. However, the

contract does not guarantee that its token balance is always sufficient to cover the total staked amount. This leads to a

situation where some users might not be able to withdraw their full principal.

Recommendation

Ensure that the contract maintains a sufficient token balance to cover all deposited amounts.

Alleviation

[Golden Goose Team, 09/26/2024]: After the user deposit, the token will enter custodian. After the user initiates a redeem,

we will transfer token to the contract.

USD-03 GOLDEN GOOSE

USV-01 INCORRECT ORDER OF share AND assetAmount IN

RedeemLock STRUCT

Category Severity Location Status

Logical Issue Major USDVault.sol (commit:be4456): 147 Resolved

Description

In the _redeem() function, the RedeemLock struct is intended to store information about a redemption, including the

share (LP token amount) and assetAmount (corresponding asset amount). However, the values for share and

assetAmount are incorrectly reversed when generating the RedeemLock . This mistake could lead to various issues, such

as failed redemptions or users receiving fewer tokens than expected.

Proof of Concept

Foundry test:

USV-01 GOLDEN GOOSE

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "forge-std/Test.sol";

contract USDVaultSimplified {

 mapping(address => Deposit) private deposits;

 mapping(uint256 => RedeemLock) private redeemMap;

 mapping(address => uint256) public balances;

 struct Deposit{

 address account;

 uint256 assetAmount;

 }

 struct RedeemLock{

 address account;

 uint256 share; // lp amount

 uint256 assetAmount;

 }

 constructor() {

 balances[msg.sender] = 100;

 }

 function depositAndUnLockDeposit(uint256 amount) public {

 balances[msg.sender] -= amount;

 deposits[msg.sender] = Deposit(msg.sender, 100);

 }

 function redeem() public {

 uint256 assetAmount = deposits[msg.sender].assetAmount;

 uint256 share = convertToShares(assetAmount);

 redeemMap[0] = RedeemLock(msg.sender,assetAmount,share);

 }

 function convertToShares(uint256 amount) public returns (uint256) {

 return amount / 2;

 }

 function withdraw() public {

 balances[msg.sender] += redeemMap[0].assetAmount;

 }

}

contract USDVaultSimplifiedTest is Test {

 USDVaultSimplified public vault;

 address public user = vm.addr(1);

USV-01 GOLDEN GOOSE

 function setUp() public {

 vm.prank(user);

 vault = new USDVaultSimplified();

 }

 function testIssue() public {

 vm.startPrank(user);

 require(vault.balances(user) == 100, "error1"); // the user's initial

balance is 100

 vault.depositAndUnLockDeposit(100);

 vault.redeem();

 vault.withdraw();

 require(vault.balances(user) == 50, "error2"); // the user's current balance

is 50 (shares), rather than 100 (assetAmount)

 vm.stopPrank();

 }

}

Recommendation

Swap the share and assetAmount values when creating the RedeemLock struct in the _redeem() function to correctly

assign them to their respective fields.

Alleviation

[Golden Goose Team, 10/11/2024]: The team heeded the advice and resolved the issue in the updated code.

USV-01 GOLDEN GOOSE

DSR-01 MINIMUM DEPOSIT VALUE NOT CLEARED FOR DELETED
VAULT

Category Severity Location Status

Logical Issue Medium DataStorage.sol (commit:0749dc): 46 Resolved

Description

The function delVault() is called by the manager to delete the specified vault. The variable minDepositMap is intended

to store the minimum deposit value for this vault. If the vault is deleted, this minimum deposit value should be reset to 0,

indicating that there are no deposit limits. However, minDepositMap is not set to 0.

Recommendation

In the delVault function, ensure that after a vault is deleted, the corresponding minDepositMap value is set to 0 to

eliminate unnecessary deposit restrictions.

Alleviation

[Golden Goose Team, 09/26/2024]: The team heeded the advice and resolved the issue in the updated code.

DSR-01 GOLDEN GOOSE

LRT-01 INCORRECT TOKEN BALANCE CHECK IN moveToken()

FUNCTION LEADS TO POTENTIAL TRANSFER FAILURE

Category Severity Location Status

Logical Issue Medium LRTVault.sol (commit:0749dc): 57 Resolved

Description

The moveToken() function in the LRTVault contract is designed to transfer excess tokens from the contract. When

tokenContract is not the same as token , the function should read the balance of the tokenContract and transfer the

specified amount of tokens. However, the function mistakenly reads the balance of token instead of tokenContract ,

which may result in failed or incomplete token transfers when trying to move tokens.

Recommendation

Modify the function to correctly read the balance of tokenContract when tokenContract is not equal to token .

Alleviation

[Golden Goose Team, 09/26/2024]: The team heeded the advice and resolved the issue in the updated code.

LRT-01 GOLDEN GOOSE

LTR-02 INCORRECT UINT TYPE USED

Category Severity Location Status

Inconsistency Medium LpToken.sol (commit:be4456): 17, 24 Resolved

Description

Upon initialization, the PRIRCE_DECIMAL variable is of uint256 . However, in the constructor function, decimals is

assigned a uint8 , which may be too small.

Recommendation

We recommend using the same uint type to update the variable.

Alleviation

[Golden Goose Team, 10/11/2024]: The team heeded the advice and resolved the issue in the updated code.

LTR-02 GOLDEN GOOSE

USD-02 POTENTIAL EXPLOIT IN getAvailableAmount() FUNCTION

DUE TO LACK OF ID OWNERSHIP VERIFICATION

Category Severity Location Status

Logical Issue Medium USDVault.sol (commit:0749dc): 158 Resolved

Description

The getAvailableAmount() function is intended to calculate the total redeemed and deposited token amount for a given

account based on the ids in the depositMap . However, the function does not verify whether the provided ids actually

belong to the account . This oversight could allow a hacker to pass arbitrary ids and receive a larger amount than

expected.

Recommendation

Modify the function to check if each id in the depositMap actually belongs to the account before including it in the

calculation.

Alleviation

[Golden Goose Team, 09/26/2024]: The team heeded the advice and resolved the issue in the updated code.

USD-02 GOLDEN GOOSE

LRV-01 INACCURATE TOKEN AMOUNT RECORDING IN
getAvailableAmount FUNCTION

Category Severity Location Status

Logical Issue Minor LRTVault.sol (commit:a68c57): 158 Acknowledged

Description

The getAvailableAmount() function is designed to return the total amount of tokens a user has deposited into the system.

However, the implementation contains a logical flaw in line 158: rather than accumulating the token balances across multiple

deposits, the function overwrites the balance with the value associated with the most recent ids passed as a parameter. As

a result, users querying their balance will receive an incomplete or incorrect amount, reflecting only their latest deposit

instead of the full balance accumulated across multiple ids . This issue can lead to inaccurate balance queries.

Recommendation

Refactor the function to accumulate the token amounts across all deposits associated with the user’s ids . The logic should

ensure that the function sums the total deposit amount and returns it accurately.

Alleviation

[Golden Goose Team, 10/17/2024]: The team acknowledged the finding and decided not to change the current codebase.

LRV-01 GOLDEN GOOSE

RNA-03 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile

Code
Minor

DataStorage.sol (commit:0749dc): 21, 51; LRTVault.sol (commit:0749dc):

25; USDVault.sol (commit:0749dc): 48, 170; VaultFactory.sol (commit:074

9dc): 16

Resolved

Description

Addresses are not validated before assignment or external calls, potentially allowing the use of zero addresses and leading

to unexpected behavior or vulnerabilities. For example, transferring tokens to a zero address can result in a permanent loss

of those tokens.

initialManager is not zero-checked before being used.

account is not zero-checked before being used.

storageContract is not zero-checked before being used.

tokenContract is not zero-checked before being used.

account is not zero-checked before being used.

tokenContract is not zero-checked before being used.

Recommendation

It is recommended to add a zero-check for the passed-in address value to prevent unexpected errors.

Alleviation

[Golden Goose Team, 09/26/2024]: The team heeded the advice and resolved the issue in the updated code.

RNA-03 GOLDEN GOOSE

RNA-04 THIRD-PARTY DEPENDENCY USAGE

Category Severity Location Status

Design

Issue
Minor

LRTVault.sol (commit:0749dc): 14, 57; USDVault.sol (commit:0749d

c): 15, 16; interfaces/IDataStorage.sol (commit:0749dc): 4~19
Acknowledged

Description

The contract is serving as the underlying entity to interact with one or more third party protocols. The scope of the audit treats

third party entities as black boxes and assumes their functional correctness. However, in the real world, third parties can be

compromised and this may lead to lost or stolen assets. In addition, upgrades of third parties can possibly create severe

impacts, such as increasing fees of third parties, migrating to new LP pools, etc.

The function LRTVault.moveToken interacts with third party contract with IERC20 interface via tokenContract .

The contract LRTVault interacts with third party contract with IERC20 interface via token .

The contract USDVault interacts with third party contract with IERC20 interface via token .

The contract USDVault interacts with custodian .

Recommendation

The auditors understood that the business logic requires interaction with third parties. item_output is recommended for the

team to constantly monitor the statuses of third parties to mitigate the side effects when unexpected activities are observed.

Alleviation

[Golden Goose Team, 09/26/2024]: The team acknowledged the finding and decided not to change the current codebase.

RNA-04 GOLDEN GOOSE

CON-05 UNUSED RETURN VALUE

Category Severity Location Status

Volatile

Code
Informational

LRTVault.sol (commit:be4456): 79; USDVault.sol (commit:be445

6): 191~193
Resolved

Description

The smart contract does not check or store the return value of an external call in a local or state variable, which may

introduce vulnerabilities due to the unhandled outcome. We would like to know the intended design.

Recommendation

We would like to confirm with the client if the current implementation aligns with the original project design.

Alleviation

[Golden Goose Team, 10/17/2024]: The team heeded the advice and resolved the issue in the updated code.

CON-05 GOLDEN GOOSE

FORMAL VERIFICATION GOLDEN GOOSE

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied formal verification to prove

that important functions in the smart contracts adhere to their expected behaviors.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of Standard Ownable Properties

We verified partial properties of the public interfaces of those token contracts that implement the Ownable interface. This

involves:

function owner that returns the current owner,

functions renounceOwnership that removes ownership,

function transferOwnership that transfers the ownership to a new owner.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

ownable-transferownership-correct Ownership is Transferred

ownable-owner-succeed-normal owner Always Succeeds

ownable-renounce-ownership-is-permanent Once Renounced, Ownership Cannot be Regained

ownable-renounceownership-correct Ownership is Removed

Verification Results

For the following contracts, formal verification established that each of the properties that were in scope of this audit (see

scope) are valid:

Detailed Results For Contract DataStorage (projects/GoldenGoose/contracts/DataStorage.sol) In
SHA256 Checksum f1ceb3243b905ef51431b49717cbb27360a94c69

FORMAL VERIFICATION GOLDEN GOOSE

Verification of Standard Ownable Properties

Detailed Results for Function transferOwnership

Property Name Final Result Remarks

ownable-transferownership-correct True

Detailed Results for Function owner

Property Name Final Result Remarks

ownable-owner-succeed-normal True

Detailed Results for Function renounceOwnership

Property Name Final Result Remarks

ownable-renounce-ownership-is-permanent True

ownable-renounceownership-correct True

FORMAL VERIFICATION GOLDEN GOOSE

APPENDIX GOLDEN GOOSE

Finding Categories

Categories Description

Coding Issue
Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Inconsistency
Inconsistency findings refer to different parts of code that are not consistent or code that does not

behave according to its specification.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and

may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified. Each such contract was compiled into a

mathematical model that reflects all its possible behaviors with respect to the property. The model takes into account the

semantics of the Solidity instructions found in the contract. All verification results that we report are based on that model.

The following assumptions and simplifications apply to our model:

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for property specifications

APPENDIX GOLDEN GOOSE

All properties are expressed in a behavioral interface specification language that CertiK has developed for Solidity, which

allows us to specify the behavior of each function in terms of the contract state and its parameters and return values, as well

as contract properties that are maintained by every observable state transition. Observable state transitions occur when the

contract’s external interface is invoked and the invocation does not revert, and when the contract’s Ether balance is changed

by the EVM due to another contract’s “self-destruct” invocation. The specification language has the usual Boolean

connectives, as well as the operator \old (used to denote the state of a variable before a state transition), and several

types of specification clause:

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

requires [cond] - the condition cond , which refers to a function’s parameters, return values, and contract state

variables, must hold when a function is invoked in order for it to exhibit a specified behavior.

ensures [cond] - the condition cond , which refers to a function’s parameters, return values, and both \old and

current contract state variables, is guaranteed to hold when a function returns if the corresponding requires condition

held when it was invoked.

invariant [cond] - the condition cond , which refers only to contract state variables, is guaranteed to hold at

every observable contract state.

constraint [cond] - the condition cond , which refers to both \old and current contract state variables, is

guaranteed to hold at every observable contract state except for the initial state after construction (because there is

no previous state); constraints are used to restrict how contract state can change over time.

Description of the Analyzed Ownable Properties

Properties related to function transferOwnership

ownable-transferownership-correct

Invocations of transferOwnership(newOwner) must transfer the ownership to the newOwner .

Specification:

ensures this.owner() == newOwner;

Properties related to function owner

ownable-owner-succeed-normal

Function owner must always succeed if it does not run out of gas.

Specification:

reverts_only_when false;

APPENDIX GOLDEN GOOSE

Properties related to function renounceOwnership

ownable-renounce-ownership-is-permanent

The contract must prohibit regaining of ownership once it has been renounced.

Specification:

constraint \old(owner()) == address(0) ==> owner() == address(0);

ownable-renounceownership-correct

Invocations of renounceOwnership() must set ownership to address(0).

Specification:

ensures this.owner() == address(0);

APPENDIX GOLDEN GOOSE

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER GOLDEN GOOSE

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER GOLDEN GOOSE

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Golden Goose Security Assessment CertiK Assessed on Oct 24th, 2024 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

